UT Wordmark Primary UT Wordmark Formal Shield Texas UT News Camera Chevron Close Search Copy Link Download File Hamburger Menu Time Stamp Open in browser Load More Pull quote Cloudy and windy Cloudy Partly Cloudy Rain and snow Rain Showers Snow Sunny Thunderstorms Wind and Rain Windy Facebook Instagram LinkedIn Twitter email alert map calendar bullhorn

UT News

UT Students Make a Plan to Drill for Water on Mars

NASA turns to Texas Engineering students to participate in its first ever Mars Ice Challenge.

Two color orange horizontal divider
Ben List and Conor McMahon presenting on the Mars Ice Challenge

NASA made a significant discovery in 2015 that has the potential to alter our ability to live beyond Earth, making some science fiction a reality. Scientists found strong evidence that liquid water flows intermittently on present-day Mars, increasing the chances of the Red Planet serving as a permanent home for humans in the future. In 2016, NASA and a team of scientists led by UT Austin recently discovered large underground ice deposits bigger than New Mexico, just under the surface of Mars.

With the possibility of accessing martian water in the near future, NASA turned to college students with a strong knowledge of drilling to participate in its first ever Mars Ice Challenge. The UT Austin’s petroleum and mechanical engineering graduate students as well as a research scientist took advantage of the opportunity.

Breaking down their drilling robot and packing it into suitcases, the UT Austin engineers left the Forty Acres for NASA’s prestigious Langley Research Center in Hampton, Virginia, to participate in a three-day program this past June. The competition, the Revolutionary Aerospace Systems Concepts – Academic Linkages (RASC-AL) Mars Ice Challenge, aimed to enhance the ability to recover water on Mars, enabling humans to live on the planet.

“NASA has really been focused on trying to get all the pieces in place to get to Mars,” said Richard Davis, assistant director of science and exploration at NASA’s Science Mission Directorate’s Planetary Science Division in Washington, D.C. “There are a lot of resources on Mars, but water is the driver.”

The competition highlighted that the race to Mars will need an “all hands on deck” approach — including petroleum, mechanical and aerospace engineers. UT Austin mechanical engineering student Conor McMahon said he found it fascinating that an application for petroleum engineering has significance for aerospace engineering.

“They are two wildly different industries, with one focused above Earth and the other below the Earth’s surface, but some of the challenges translate to both fields,” said McMahon.

Mars Ice Challenge 2017

UT PGE graduate student Ben List speaking with the Mars Ice Challenge judges about the team’s robot. Photo courtesy of NASA.

Teams from across the country submitted proposals, and only the best eight teams were selected to take part in the final round of the Mars Ice Challenge. Before the drilling competition began, the engineers attended talks with NASA’s scientists and private-sector robotic companies.

“It was an amazing experience to hear leaders from NASA talk about where they think the water is on Mars and their thoughts on how to recover it,” said Ben List, a UT Austin petroleum and geosystems engineering graduate student. “It was nice to see that we are working on a high-impact project.”

In addition to the presentations, the students participated in a poster session. They had the opportunity to present their robotic strategy to the competition’s judges.

“The judges are all involved in these drilling challenges, so they wanted to pick our brains about how we developed our robot and how it performs,” said List. “They are interested in the path-to-flight, so what design changes we would need to make it work on Mars. The judges want to ensure it is not just an Earth-based system.”

On the first day of the competition, the teams were tasked with setting up their robot and then receiving the all-clear from the judges. The rules require that the robots met all the mass, volume and power constraints.

The competition’s goal is to drill through 16 inches of simulated Martian soil and then through another 16 inches of solid blocks of ice. The team that could recover the most water during the challenge would win.

Mars Ice Challenge 2017

Mars Ice Challenge 2017 Photo courtesy of NASA.

“There were some heated moments on the first day as we were doing a lot of trouble shooting,” said List. “We were able to drill through all the dirt on the first day, so we felt good about our progress.”

On the second day of the competition, the teams faced an additional challenge – they were no longer able to manage the robots by hand. They could only be remotely operated, making it a more realistic simulation.

The UT Austin team prepared for the second day by creating a simple system rather than taking the “bells and whistles” route. Their philosophy is “The fewer points of failure, the better.”

“We were in a great rhythm, drilling through the first 12 inches of ice, but then we reached our capacity,” said List. “Unfortunately our heater broke down as well. I think if it would have survived, we could have won the competition.”

Despite not taking home the golden robot, the students are proud of their work. They increased their leadership skills and ability to work under pressure, which will make them stronger engineers. McMahon said he is excited to see what the future holds for creating a base for humans on Mars.

“This is an important project in the case that something catastrophic happens on Earth – we will want to have a back-up plan,” he said.

Mars

Photo provided by Cockrell School of Engineering.